WEM Algorithms and Probabilistic Learning
نویسندگان
چکیده
منابع مشابه
Probabilistic Learning Algorithms and Optimality Theory
This paper provides a critical assessment of the Gradual Learning Algorithm (GLA) for probabilistic optimality-theoretic grammars proposed by Boersma and Hayes (2001). After a short introduction to the problem of grammar learning in OT, we discuss the limitations of the standard solution to this problem (the Constraint Demotion Algorithm by Tesar and Smolensky (1998)), and outline how the GLA a...
متن کاملThesis Proposal Distributed Algorithms for Probabilistic Inference and Learning
Probabilistic inference and learning problems arise naturally in distributed systems such as sensor networks, teams of mobile robots, and recommendation systems. In these systems, the data resides at multiple distributed locations, and the network nodes need to collaborate, in order to perform the inference or learning task. This thesis has three thrusts. First, we propose distributed implement...
متن کاملLearning Probabilistic Description Logics: A Framework and Algorithms
Description logics have become a prominent paradigm in knowledge representation (particularly for the Semantic Web), but they typically do not include explicit representation of uncertainty. In this paper, we propose a framework for automatically learning a Probabilistic Description Logic from data. We argue that one must learn both concept definitions and probabilistic assignments. We also pro...
متن کاملSystems and Learning Algorithms for Probabilistic Logical Knowledge Bases
In real world domains the information is often uncertain, hence it is of foremost importance to be able to model uncertainty and to reason over it. In this paper we show tools and learning systems under development for probabilistic structured data. Four systems will be considered and an overview of the related issues and of future work will be given. The first described system is cplint on SWI...
متن کاملProbabilistic Reasoning through Genetic Algorithms and Reinforcement Learning
In this paper, we develop an efficient approach for inferencing over Bayesian etworks by using a reinforcement learning controller to direct a genetic algorithm. The random variables of a Bayesian network can be grouped into several sets reflecting the strong probabilistic correlations between random variables in the group. We build a reinforcement learning controller to identify these groups a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications
سال: 1998
ISSN: 2188-4730,2188-4749
DOI: 10.5687/sss.1998.261