WEM Algorithms and Probabilistic Learning

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Learning Algorithms and Optimality Theory

This paper provides a critical assessment of the Gradual Learning Algorithm (GLA) for probabilistic optimality-theoretic grammars proposed by Boersma and Hayes (2001). After a short introduction to the problem of grammar learning in OT, we discuss the limitations of the standard solution to this problem (the Constraint Demotion Algorithm by Tesar and Smolensky (1998)), and outline how the GLA a...

متن کامل

Thesis Proposal Distributed Algorithms for Probabilistic Inference and Learning

Probabilistic inference and learning problems arise naturally in distributed systems such as sensor networks, teams of mobile robots, and recommendation systems. In these systems, the data resides at multiple distributed locations, and the network nodes need to collaborate, in order to perform the inference or learning task. This thesis has three thrusts. First, we propose distributed implement...

متن کامل

Learning Probabilistic Description Logics: A Framework and Algorithms

Description logics have become a prominent paradigm in knowledge representation (particularly for the Semantic Web), but they typically do not include explicit representation of uncertainty. In this paper, we propose a framework for automatically learning a Probabilistic Description Logic from data. We argue that one must learn both concept definitions and probabilistic assignments. We also pro...

متن کامل

Systems and Learning Algorithms for Probabilistic Logical Knowledge Bases

In real world domains the information is often uncertain, hence it is of foremost importance to be able to model uncertainty and to reason over it. In this paper we show tools and learning systems under development for probabilistic structured data. Four systems will be considered and an overview of the related issues and of future work will be given. The first described system is cplint on SWI...

متن کامل

Probabilistic Reasoning through Genetic Algorithms and Reinforcement Learning

In this paper, we develop an efficient approach for inferencing over Bayesian etworks by using a reinforcement learning controller to direct a genetic algorithm. The random variables of a Bayesian network can be grouped into several sets reflecting the strong probabilistic correlations between random variables in the group. We build a reinforcement learning controller to identify these groups a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications

سال: 1998

ISSN: 2188-4730,2188-4749

DOI: 10.5687/sss.1998.261